
Surface patterning of soft polymer film-coated cylinders via an electric field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 445006

(http://iopscience.iop.org/0953-8984/21/44/445006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 05:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/44
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 445006 (8pp) doi:10.1088/0953-8984/21/44/445006

Surface patterning of soft polymer
film-coated cylinders via an electric field
Bo Li, Yue Li, Guang-Kui Xu and Xi-Qiao Feng1

AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084,
People’s Republic of China

E-mail: fengxq@tsinghua.edu.cn

Received 27 June 2009, in final form 24 September 2009
Published 15 October 2009
Online at stacks.iop.org/JPhysCM/21/445006

Abstract
Using the linear stability analysis method, we investigate the surface wrinkling of a thin
polymer coating on a cylinder in an externally applied electric field. It is demonstrated that
energy competition between surface energy, van der Waals interactive potential energy and
electrostatic interaction energy may lead to ordered patterns on the film surface. The analytical
solutions are derived for the critical conditions of both longitudinal and circumferential
instabilities. The wavelengths of the generated surface patterns can be mediated by changing
the magnitude of the electric field. Our analysis shows that the surface morphology is sensitive
to the curvature radius of the fiber, especially in the micrometer and nanometer length scales.
Furthermore, we suggest a potential approach for fabricating hierarchical patterns on curved
surfaces.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many natural biomaterials have hierarchical surface structures,
which are of critical importance for their biological functions.
For example, owing to their special surface microstructures,
lotus and lady’s mantle leaves have superhydrophobic
and self-cleaning properties [1]. Water striders can
effortlessly stand and jump on water since the hierarchical
microstructures on their legs can remarkably enhance their
water-repelling ability [2]. Inspired by these interesting
phenomena, much effort has been directed towards biomimetic
fabrication of surface microstructures of novel materials with
superhydrophobic or other physical properties. In addition,
surface patterning techniques have a wide range of applications
in lithography, light-emitting displays, microelectronics and
plastic electronics, smart adhesion, medical engineering and
many other fields. As a promising technique, surface
patterning can be achieved by destabilization of materials,
mediated by intermolecular interactions (e.g. van der Waals
force) or externally applied forces (e.g. a mechanical
load). Surface instabilities and induced patterns, occurring
spontaneously or in response to externally applied loads, also
underlie various materials processing, function and reliability

1 Author to whom any correspondence should be addressed.

problems of technologically significant applications [3–10].
Besides mechanical forces, an electric field can also lead to
the formation of surface/interface patterns on materials [11–13]
and this phenomenon has attracted increasing interest [14–19].

Most previous studies have focused on morphological
formation on a planar surface. Due to the effects of topological
constraint and surface tension, however, the wrinkling patterns
on curved surfaces exhibit some features distinct from those
on planar surfaces. Recently, considerable attention has been
given to the instability of curved surfaces, e.g. the surface
instability of electrospun fibers [20] and other cylindrical
and spherical surfaces [21–28]. However, three-dimensional
pattern characteristics and instability mechanisms of curved
surfaces under the simultaneous action of surface tension,
electric field and van der Waals force remain elusive.

Pattern formation on a curved surface is of both theoretical
and technological interest. On the one hand natural materials
(e.g. water strider legs and plant seeds) usually have curved
shapes; and on the other, devices and structures with various
curved shapes (e.g. fibers and particles) are widely employed
in advanced functional materials. Patterning a curved surface
at the micro/nanoscale remains a challenging issue. In
the present paper, we suggest an approach for fabricating
micro/nanosized patterns on a cylindrical surface. The surface
stability of a viscous thin film coated on a cylinder under
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http://dx.doi.org/10.1088/0953-8984/21/44/445006
mailto:fengxq@tsinghua.edu.cn
http://stacks.iop.org/JPhysCM/21/445006


J. Phys.: Condens. Matter 21 (2009) 445006 B Li et al

Figure 1. A viscous thin film lying on a stiff cylinder subjected to an
externally applied electric field: (a) front view; (b) lateral view.

the action of an electric field is analyzed in section 2.
Using linear electrohydrodynamic stability theory, the time-
dependent evolution equation of the thin film surface and the
critical conditions of surface wrinkling are analytically derived
in section 3. The effects of electric field intensity, fiber
curvature and surface tension on the induced surface patterns
are examined in section 4. Finally, we discuss a biologically
inspired technique to produce hierarchical surface patterns of
materials.

2. Model and basic equations

2.1. Model

Consider a very long and stiff cylinder coated with a conductive
polymer film, surrounded by a tube-shaped electrode, as shown
in figure 1. A voltage U is applied between the cylinder and the
electrode, creating an electric field perpendicular to the surface
of the film. The dielectric constant of the air around the film is
εa. During the patterning process, the polymer film is heated
to a temperature above its glass transition temperature [15],
and in this case it is usually treated as an extremely viscous
fluid [12, 13]. Refer to a cylindrical polar coordinate system
(r, θ, z), where the z axis is aligned with the longitudinal
direction. Let r0 denote the radius of the fiber, h0 the thin
film thickness before wrinkling, and R the inner radius of the
electrode. Then, the outer radius of the film before wrinkling
is b = r0 + h0, and the distance between the counter electrode
and the undisturbed surface is R − b.

In general, the surface instability of thin films is of the
long-wave type, that is, the characteristic length of the wave is
much larger than the film thickness [11–13]. In this case, the
surface evolution of the thin film can be written as [15, 16]

∂h

∂ t
= −∇ · j, (1)

where ∇ denotes the gradient operator, h is the film thickness
after perturbation and j is the pressure-driven flux in the
viscous polymer. Neglecting the viscosity of the air between
the film and the electrode, j is related to the pressure p by

j = − 1

3μ
h3∇ p, (2)

where μ is the viscosity of the polymer film. The pressure p
involves four contributions, including atmospheric pressure p0,
Laplace pressure pLap, electrostatic pressure pel, and disjoining
pressure pdis, i.e.

p = p0 + pLap + pel + pdis. (3)

The Laplace pressure arises from the surface energy
contribution due to the change of surface area, and is given
by pLap = γ κ , where γ is the surface tension and κ is the
curvature of the film surface. The electrostatic pressure pel

originates from the Maxwell stress, which will be given in
section 3. The disjoining pressure at the film surface stems
from the van der Waals interaction between the film and the
wettable fiber. It is expressed as pdis = A/(6πh3), with A
being the Hamaker constant [21].

2.2. Electric field

The electric field intensity E(Er , Eθ , Ez) fulfills the Maxwell
equations [29]

∇ · E = 0, ∇ × E = 0, (4)

in the air between the surface of the conductive film and the
counter electrode. Construct a potential function φ such that

E = −∇φ. (5)

Then the second equation in equation (4) is automatically
satisfied and the first equation yields

	φ = 0, (6)

where 	 is the Laplacian operator.
Under the action of the electric field, a Maxwell stress σM

will arise at the surface of the thin film [29],

σM = 1
2ε0εaE2

a, (7)

where ε0 is the dielectric permittivity of the vacuum. For a
conductive film, the electric field affects the flow only through
the Maxwell stress acting on the surface. In this case, the bulk
of the viscous film is free of body charges.

3. Linear stability analysis

3.1. Physical fields in the undisturbed state

In the undisturbed state, the electric potential φ̄, satisfying
equation (6) and the symmetrical conditions, takes the
following form φ̄ = c̄ ln r + d̄, where c̄ and d̄ are two
constants, which still need to be determined from the boundary
conditions. Here and in the sequel, an overbar stands for a
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Figure 2. Three-dimensional morphology of surface instability on a
cylindrical film.

quantity in the undisturbed state. These boundary conditions
include φ̄|r=b = U and φ̄|r=R = 0. Then the electric potential
in the air is given by

φ̄ = U

ln(R/b)
ln

R

r
. (8)

From equations (5) and (8), the nonzero component of the
electric fields is then derived as

Ēr = U

r ln(R/b)
. (9)

3.2. Linear stability analysis

In what follows, we will investigate the surface stability of
the thin film by a linear instability analysis. For a very
long cylindrical surface, there exist two possible types of
surface instability, leading to longitudinal and circumferential
patterns, respectively [28]. They may occur separately or
simultaneously on a surface, depending upon the characteristic
sizes (thin film thickness h0 and fiber radius r0), loading
conditions, and mechanical properties of the thin film. The
simultaneous occurrence of the two types of instability will
lead to a three-dimensional surface pattern, as illustrated in
figure 2. The critical condition of surface instability and
the characteristic wavelength of the induced three-dimensional
surface pattern will be derived.

Introduce the following sinusoidal perturbation over the
surface of the thin film [28]:

b̃(θ, z, t) = b + δ(t) cos(nθ) cos(ωz), (10)

where δ(t) is the amplitude of the perturbation, n the mode-
number in the circumferential direction, and ω the wavenumber
in the axial direction. A tilde over a symbol stands for a
quantity in the wrinkling state. For the linear stability analysis
presented here, all non-linear terms of δ(t) can be neglected.
Thus, the mean curvature on the film surface corresponding to
the deformation in equation (10) is

κ = 1

b
+

(
n2 − 1

b2
+ ω2

)
δ cos(nθ) cos(ωz). (11)

The electric potential φ̃ induced by the perturbation
in equation (10) can be characterized in the form φ̃ =

φ̃r (r) cos(nθ) cos(ωz). Substituting this expression into
equation (6) yields

φ̃ = [c̃ In(ωr) + d̃ Kn(ωr)] cos(nθ) cos(ωz), (12)

where c̃ and d̃ are two constants still to be determined, and
In(ωr) and Kn(ωr) are the first and second modified Bessel
functions of the nth order, respectively. The total electric
potential resulting from the perturbation and the externally
applied voltage is written as φ = φ̄ + φ̃ and the corresponding
boundary conditions read φ|r=b̃ = U and φ|r=R = 0. Making
use of equation (8) and eliminating the second-order terms of
δ, the constants c̃ and d̃ in equation (12) can be easily derived.
Then the electric potential induced by the perturbation is given
by

φ̃ = − Uδ

b ln(R/b)

Kn(ωR)In(ωr) − In(ωR)Kn(ωr)

In(ωR)Kn(ωb) − In(ωb)Kn(ωR)

× cos(nθ) cos(ωz). (13)

From equations (5), (8) and (13), the electric field in the
air can be obtained, but its lengthy expression is omitted here.
Using equation (7), the Maxwell stress is calculated to the first
order of δ as

σM = ε0εaU 2

2b2[ln(R/b)]2

×
{

1 + 2ωδ[Kn(ωR)I ′
n(ωb) − In(ωR)K ′

n(ωb)]
In(ωR)Kn(ωb) − In(ωb)Kn(ωR)

× cos(nθ) cos(ωz)

}
, (14)

where the prime stands for the derivative with respect to the
coordinate r . Then the electrostatic pressure pel acting on
the film surface equals −σM, and the total pressure p in
equation (3) is determined as

p = p̄0 +
[
γ

(
n2 − 1

b2
+ ω2

)
− σM0 − A

2πh4
0

]

× δ cos(nθ) cos(ωz), (15)

where

p̄0 = p0 + γ

b
− ε0εaU 2

2b2[ln(R/b)]2
+ A

6πh3
0

, (16)

σM0 = ε0εaU 2ω

b2[ln(R/b)]2

Kn(ωR)I ′
n(ωb) − In(ωR)K ′

n(ωb)

In(ωR)Kn(ωb) − In(ωb)Kn(ωR)
.

(17)
The pressure p̄0 represents the initial total pressure before

wrinkling and, therefore, is independent of n and ω. It is
seen from equation (16) that, at the initial state, the surface
tension presses the film while the electrical stress and the van
der Waals force (A < 0) induce negative pressures on the film
surface. The second term in equation (15) is the total pressure
excited by the perturbation. Substituting equation (15) into (1)
and applying equations (2) and (11) leads to dδ/dt = τδ.
Integrating this equation, the evolution equation of surface
morphology after the initial perturbation is derived as δ(t) =
δ0 exp(τ t), where δ0 denotes the perturbation amplitude at
t = 0. τ is an important dimensionless parameter evaluating

3
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the growth of surface evolution, also referred to as the growth
rate. It is given by

τ = γ h3
0

3μ

(
n2

b2
+ ω2

) [
1 − n2

b2
− ω2 + σM0

γ
+ A

2πγ h4
0

]
.

(18)
From equation (18), a critical state of the system can

be defined by τ = 0, and we denote the corresponding
critical wavenumber as ωc and the mode-number as nc. If
τ < 0, the amplitude of the initial perturbation will decay
exponentially with time, indicating that the film surface is
stable with respect to the perturbation. When τ > 0, on
the other hand, the film is unstable and the perturbation
amplitude will be exponentially magnified with time. In
the latter case, due to the imbalance among the Laplacian,
electrostatic and disjoining pressures acting on the film surface,
the fluctuation with a particular longitudinal wavenumber and
circumferential mode-number will be amplified, leading to the
formation of an ordered surface pattern. The characteristic
pattern corresponding to the fastest growth rate is regarded
as the most probable mode to appear. In other words,
one can predict its characteristic longitudinal wavenumber
ωm and circumferential mode-number nm from the following
conditions:

∂τ

∂ω
= 0,

∂τ

∂n
= 0,

∂2τ

∂ω2
< 0,

∂4τ

∂ω2∂n2
−

(
∂2τ

∂ω∂n

)2

> 0.

(19)

Then the corresponding characteristic wavelengths in the
longitudinal and circumferential directions are designated as
λLm = 2π/ωm and λCm = 2πb/nm, respectively.

In the special case when only longitudinal surface
wrinkling occurs, the growth rate τL can be readily obtained
from equation (18) by setting n = 0. In the absence of
the electric field, the characteristic longitudinal wavelength is
explicitly derived as

λLm = 4πbh2
0
√

πγ√
2πγ h4

0 + Ab2
, (20)

which describes the film surface pattern induced by
spontaneous instability in the longitudinal direction. It is
seen from equation (20) that the van der Waals force (A <

0) will partially counteract the effect of surface tension and
consequently increase the wavelength. This spontaneous
instability occurring on the surface of a thin fiber is different
from that at a planar surface. For a thin film lying on a planar
substrate the surface tension always plays a stabilizing role,
while for the problem of current interest, the surface tension
may drive the thin film to wrinkle due to the small curvature of
the film surface. Therefore, the spontaneous instability of thin
films is sensitive to the curvature of the underlying substrate.
Furthermore, if the van der Waals interaction between the
thin film and the fiber is further neglected, the wavelength in
equation (20) corresponding to the fastest growth rate of τL

reduces to λLm = 2
√

2πb, which is identical to the wavelength

of the classical Rayleigh instability [30]. This indicates that
one can utilize spontaneous instability to fabricate ordered
patterns on a thin polymer film surface. However, the use of
an electric field will make the surface patterning process easier
and, more importantly, allow us to mediate the characteristic
dimensions of the surface morphology by varying such factors
as the electric field intensity.

In another special case when only the circumferential
surface wrinkling happens, the limit of equation (18) for ω →
0 gives

τC = γ h3
0n2

3μb2

[
nε0εaU 2(R2n + b2n)

γ b3[ln(R/b)]2(R2n − b2n)
+ A

2πγ h4
0

− n2 − 1

b2

]
. (21)

Obviously, the first term in the square brackets, stemming
from the externally applied electric field, always destabilizes
the film surface. It is worth noticing that the individual
circumferential instability (τC > 0) occurs only when the
voltage U exceeds a certain critical value since the mode-
number n (integer) in equation (21) must be greater than 1
(n = 1 corresponding to the simple relative rotation of the film
surface). In the absence of an electric field, the growth rate τC

is always negative and, therefore, the spontaneous instability
does not happen in the circumferential direction. Furthermore,
for a large value of n or R � b, the characteristic wavelength
on the film surface can be explicitly derived as

λCm = {
16γ b2h2

0π
3/2[ln(R/b)]2

}{
3
√

πh2
0ε0εaU

2

+
√

9πh4
0ε

2
0ε

2
aU 4 + 16γ b2(2πγ h4

0 + Ab2)[ln(R/b)]4
}−1

.

(22)

Equations (21) and (22) imply that increasing the voltage
U can amplify the growth rate of surface morphological
evolution and reduce the characteristic wavelength λCm.

4. Results and discussions

In section 3 we derived the surface evolution equation for a
viscous film bonded on a stiff fiber in an electric field. In
what follows, we will illustrate the prominent features of the
longitudinal and circumferential instabilities in this system.

We normalize the growth rate τ as τ0 = 3μb4τ/(γ h3
0).

Equation (18) shows that the dimensionless growth rate τ0 is a
function of the wavenumber ω along the longitudinal direction
and the mode-number n along the circumferential direction,
as shown in figure 3, where we take the representative values
γ = 0.015 N m−1, h0 = 100 nm, A = −20 × 10−20 J,
d = 50 nm [16, 31] and r0 = 1 μm. It is seen from
figure 3(a) that the critical plane τ0 = 0 corresponds to a
curve of critical modes (nc, ωc), at which the growth rate is
zero. The surface of the thin film is unstable in the range of
ω ∈ (0, ωc) and n ∈ (0, nc), i.e. above the critical plane τ0 = 0
in figure 3(a). The electric field serves as the main driving force
of the instability. Due to the perturbation, the electrostatic
pressure on the film surface will become nonuniform and its
gradient drives the viscous fluid from the troughs to the crests

4
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Figure 3. (a) Dependence of the growth rate τ0 on the wavenumber
ω and mode-number n, where U = 20 V. (b) Dependence of the
growth rate τ0 on the wavenumber ω for mode-number n = 0 and
representative voltages U . (c) Dependence of the growth rate τ0 on
the wavenumber ω for representative mode-number n and voltages
U .

and increases the amplitude of the perturbation. On the other
hand, the van der Waals interaction between the film and the
fiber will drive the matter from the crests to the troughs and
play a surface stabilizing role. In addition, the surface tension,
manifesting itself through the curvature term, may contribute
to the Rayleigh-like instability of the thin film on a thin fiber.

Among all possible modes of bifurcation, the actual
film surface will undergo the most probable one (nm, ωm),
which holds the fastest growth rate of surface morphological
evolution. Thus, competition between the electric force,
surface tension and repulsive van der Waals force will yield
a regular pattern on the surface of the curved film. Figures 3(b)
and (c) show the variation of the growth rate τ0 with respect to
the wavenumber ω for several circumferential mode-numbers
n. It is seen that in the special case of n = 0, the growth rate
τ0 approaches zero as ω → 0. The curve for U = 0 (also

Figure 4. Dependence of the characteristic wavelengths λLm and λCm

on the voltage U , where we take h0 = 50 nm, γ = 0.015 N m−1,
d = 50 nm [18, 31] and r0 = 1 μm.

refer to the inset at the top right of figure 3(b)), corresponds
to spontaneous instability of the film surface. The critical
wavenumber ωc and the most probable wavenumber ωm for
this spontaneous instability are 0.90 μm−1 and 0.64 μm−1,
respectively. As the externally applied voltage increases, the
electric field gradually prevails over the surface tension and
van der Waals interaction and dominates the surface patterning
process. It is also seen from figure 3(b) that with increasing U ,
the growth rate for different voltages will exhibit a maximum
and then become negative for ω larger than ωc. Both the
critical wavenumber ωc and the most probable wavenumber ωm

increase with the increase of U .
Figure 3(c) shows the results of circumferential instability.

For a given mode-number n, a larger voltage will result in
a faster growth rate and a larger most probable wavenumber.
For n = 40, for example, U = 16 V and 20 V lead to
ωm = 30 μm−1 and τ0m = 2.69 × 106, and ωm = 64.7 μm−1

and τ0m = 1.5 × 107, respectively. In addition, one can find
that under a given voltage, the film surface is insensitive to
the perturbation of sufficiently large n, as indicated by the
curves of n = 40 and 110. Therefore, surface patterns with a
relatively large wavenumber and mode-number are achievable
by increasing the intensity of the electric field.

To further illustrate the influences of such factors as
electric field and material properties on the surface pattern,
we separately discuss the longitudinal (i.e. n = 0) and
circumferential (i.e. ω = 0) instabilities. For a given film
thickness h0, the variations of the characteristic wavelengths
λLm and λCm with increasing U are depicted in figure 4.
Apparently, increasing the voltage significantly reduces both
the characteristic wavelengths λLm and λCm. Notwithstanding
the surface tension spontaneously characterizes the film surface
by Rayleigh-like instability and the van der Waals interaction
enhances the corresponding wavelength, the surface pattern is
mainly controlled by the external voltage. This salient feature
inspires a feasible and controllable approach for patterning
a curved surface. Moreover, when the applied voltage U is
large, λLm almost coincides with λCm, while for a small U
they have a considerable difference. This is because when
U is relatively small, the instability happens mainly in the
longitudinal direction and the surface tension dominates the

5
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Figure 5. (a) Dependence of the characteristic wavelength λLm on
the film thickness h0 for different voltages. (b) Dependence of the
characteristic wavelength λCm on the film thickness h0 for different
voltages.

surface instability of the film. It is interesting to note that both
λLm and λCm linearly depend on U in the bi-logarithmic plot.
This result is similar to that reported by Schäffer et al [11, 13]
who found that in reduced coordinates, the wavelength of a
planar film linearly decreases with the electric field intensity.

Figure 5 plots the dependences of the wavelengths λLm and
λCm on the film thickness, where we use γ = 0.015 N m−1,
d = 50 nm, A = −20×10−20 J [16, 31] and r0 = 1 μm. With
the increase in the film thickness both λLm and λCm decrease
gradually and then approach constants. However, the thickness
effect on the characteristic pattern can be neglected when the
voltage is large enough.

When the fiber size reduces to a relatively small scale
(e.g. 1 μm), the surface wrinkling behavior sensitively depends
on the curvature radius r0, as illustrated in figure 6. One can
find that under a given voltage, the smaller the fiber radius,
the shorter the surface wrinkling wavelength, especially for
a fiber with a diameter smaller than 1 μm and under a low
voltage. This curvature dependence can also be suppressed by
a strong applied electric field. When the voltage is sufficiently
high (e.g. U = 40 V), the electric field prevails over the
surface tension and van der Waals interaction and completely
dominates the surface patterning behavior. Therefore, for a
very high voltage, the effect of both film thickness and fiber
curvature on the surface morphology can be neglected and the
solution reduces to that for a thin film on a planar substrate.

We take the circumferential instability for example to
observe the effect of the surface tension of the film. Figure 7

Figure 6. (a) Dependence of the characteristic wavelength λLm on
the curvature radius r0 for different voltages. (b) Dependence of the
characteristic wavelength λCm on the curvature radius r0 for different
voltages. In the plots, γ = 0.015 N m−1, h0 = 50 nm,
d = 50 nm [16, 31].

Figure 7. Dependence of the characteristic wavelength λCm on the
film thickness h0 for different surface tensions γ . In the plot,
U = 15 V, r0 = 0.5 μm, d = 50 nm.

reveals that the surface tension magnifies the wavelength of
surface patterns. It is worth mentioning that the surface tension
plays a stabilizing role in a planar film while it can also result in
spontaneous instability in the longitudinal direction for a thin
film on a microsized fiber, as already described in section 4.
The surface tension can drive the Rayleigh-like instability of
the cylindrical film surface with a characteristic wavelength
2
√

2πb, and the electric field reduces this wavelength.

6
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Figure 8. Hierarchical patterns on a cylinder.

5. Possible applications

The surface wettability of a material relies not only on its
chemical composition but also on its surface morphology.
Various interesting phenomena and superior surface properties
of materials occur when the characteristic sizes of their
surface structure materials reduce to micro- or nanometers,
for example the superhydrophobicity of lotus leaves [1], water
striders [2, 32] and mosquitoes [33]. These surface properties
are not only crucial for various biological processes but
are also attractive for numerous industrial applications, for
instance easy-cleaning windows and traffic indicators (to repel
raindrops), antisticking antennas for snow and stain-resistant
textiles, aquatic super-floating and drag-reducing coatings for
miniature aquatic robots and hulls. Therefore, much effort
has been given to fabricating hierarchical micro/nanostructures
on solid surfaces, through top-down (e.g. photolithography)
and bottom-up (e.g. molecular self-assembly) approaches. For
example, Shi et al [34] fabricated, by using the latter method,
an artificial biomimetic water strider.

Our above theoretical analysis suggests that surface
patterns with controllable characteristic sizes can also be
fabricated on a polymer film lying on a cylinder by applying
an external electric field. In addition, this method can be
employed in, for example, biomimetic fabrication of a fiber
with hierarchical structures like those on water strider legs.
The fabrication of such a hierarchical surface structure could
be achieved via a two-step approach, as depicted in figure 8.
First, we introduce a viscous polymer film coating on a stiff
fiber and then pattern its surface with a microsized wavelength
by applying an electric field at a relatively high temperature.
After the patterned polymer has been solidified, another thinner
polymer melt film is coated. In the second step, the outermost
thin film surface is patterned with a nanosized wavelength by
applying an electric field with a designed amplitude.

6. Conclusions

A linear instability analysis has been presented for a viscous
fluid film lying on a stiff cylinder. The equation for evolution
of the film surface morphology with time and the critical
condition of instability are provided analytically. It is found
that the characteristic wrinkling wavelength, corresponding to
the maximum growth rate of surface perturbation, decreases

with increase in the externally applied voltage. The
original curvature radius of the film plays a significant role
in the surface instability, especially when it reduces to
micro/nanosizes. The surface tension destabilizes the film
surface with Rayleigh-like characteristics, which is distinct
from those occurring on the planar film.

Some recent previous studies suggested that surface
instability and pattern formation can occur on planar films
in response to such interactions as the van der Waals
or electrostatic force, which can be induced by a rigid
contactor [5, 9]. However, this technique encounters
difficulties when it is applied to curved surfaces. Our analysis
in the present paper indicates that an applied electric field
might be utilized to pattern a curved surface. By varying
the intensity of the electric field, the characteristic sizes of
the patterning on the surface of a curved film could be
mediated. Therefore, this study is helpful for fabricating
micro/nanopatterns and hierarchical patterns on the surfaces of
materials and devices.
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